Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма icon

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма





Скачать 168.6 Kb.
НазваниеСоставитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма
А.Е. Тябаев
Дата конвертации26.03.2013
Размер168.6 Kb.
ТипЛекция



Концепции современного естествознания

Составитель лекций доцент междисциплинарной кафедры ТПУ, к.г.н. А.Е. Тябаев

Лекция 7. Электромагнитная картина мира. Специальная и общая теории относительности.


7.1. Основные экспериментальные законы электромагнетизма.

7.2 Формирование понятия электромагнитного поля как новой физической реальности.

7.3. Электронная теория Лоренца.

7.4. Специальная теория относительности.

7.5 Общая теория относительности.

7.6 Основные понятия и принципы ЭМКМ.


7.1. Основные экспериментальные законы электромагнетизма.

Электрические и магнитные явления были известны человечеству с древности. Само понятие «электрические явления» восходит к Древней Греции (вспомните: два куска янтаря («электрон»), потертые тряпочкой, отталкиваются друг от друга, притягивают мелкие предметы…). Впоследствии было установлено, что существует как бы два вида электричества: положительное и отрицательное.

Что касается магнетизма, то свойства некоторых тел притягивать другие тела были известны еще в далекой древности, их назвали магнитами. Свойство свободного магнита устанавливаться в направлении «Север-Юг» уже во II-м веке до н.э. использовалось в Древнем Китае во время путешествий. Первое же в Европе опытное исследование магнита было проведено во Франции в 13-м веке. В результате было установлено наличие у магнита двух полюсов. В 1600-м году Гильбертом была выдвинута гипотеза о том, что Земля представляет собой большой магнит: этим и обусловлена возможность определения направления с помощью компаса.

18-й век, ознаменовавшийся становлением МКМ, фактически положил начало и систематическим исследованиям электрических явлений. Так было установлено, что одноименные заряды отталкиваются, появился простейший прибор – электроскоп. В середине 18 в. была установлена электрическая природа молнии (исследования Б. Франклина, М. Ломоносова, Г. Рихмана, причем заслуги Франклина следует отметить особо: он является изобретателем молниеотвода; считается, что именно Франклин предложил обозначения "+" и "–" для зарядов).

В 1759м- году. английский естествоиспытатель Р. Симмер сделал заключение о том, что в обычном состоянии любое тело содержит равное количество разноименных зарядов, взаимно нейтрализующих друг друга. При электризации происходит их перераспределение.

В конце 19-го, начале 20-го века опытным путем было установлено, что электрический заряд состоит из целого числа элементарных зарядов е=1,6×10-19 Кл. Это наименьший существующий в природе заряд. В 1897-м году. Дж. Томсоном была открыта и наименьшая устойчивая частица, являющаяся носителем элементарного отрицательного заряда (электрон, имеющий массу moe=9,1×10-31 кг). Таким образом, электрический заряд является дискретным, т.е. состоящим из отдельных элементарных порций q=± ne, где n – целое число.

В результате многочисленных исследований электрических явлений, предпринятых в 18-19-м веках. был получен ряд важнейших законов.

Закон сохранения электрического заряда: в электрически замкнутой системе сумма зарядов есть величина постоянная. (Т.е. электрические заряды могут возникать и исчезать, но при этом обязательно появляется и исчезает равное количество элементарных зарядов противоположных знаков). Величина заряда не зависит от его скорости.


Закон взаимодействия точечных зарядов, или закон Кулона (Шарль Огюст Кулон (1736-1806)):



, где ε0 - электрическая постоянная равная 8,85*10-12 к /Н*м2 ; ε – относительная диэлектрическая проницаемость среды (в вакууме e = 1). Силы Кулона существенны до расстояний порядка 10-15м (нижний предел). На меньших расстояниях начинают действовать ядерные силы (т.н. сильное взаимодействие).

Исследование взаимодействия зарядов, проводившееся в 19 в. замечательно еще и тем, что вместе с ним в науку вошло понятие поля. Начало этому было положено в работах М. Фарадея. Поле неподвижных зарядов получило название электростатического. Электрический заряд, находясь в пространстве, искажает его свойства, т.е. создает поле. Силовой характеристикой электростатического поля является его напряженность . Электростатическое поле является потенциальным. Его энергетической характеристикой служит потенциал j.

Открытие Эрстеда. Природа магнетизма оставалась неясной до конца 19-го века, а электрические и магнитные явления рассматривались независимо друг от друга, пока в 1820-м году датский физик Ханс Эрстед не открыл магнитное поле у проводника с током. Так была установлена связь электричества и магнетизма. Силовой характеристикой магнитного поля является напряженность . В отличие от незамкнутых линий электрического поля силовые линии магнитного поля замкнуты, т.е. оно является вихревым.





Электродинамика. В течение сентября 1820 г. французский физик, химик и математик А.М. Ампер разрабатывает новый раздел науки об электричестве – электродинамику.

Законы Ома, Джоуля-Ленца: важнейшими открытиями в области электричества явились открытый Георгом Омом (1826) закон I=U/R и для замкнутой цепи I= ЭДС/(R+r), а также закон Джоуля-Ленца для количества тепла, выделяющегося при прохождении тока по неподвижному проводнику за время t: Q = IUT.

Работы МайклаФарадея. Исследования английского физика М.Фарадея (1791-1867) придали определенную завершенность изучению электромагнетизма. Зная об открытии Эрстеда и разделяя идею о взаимосвязи явлений электричества и магнетизма, Фарадей в 1821-м году поставил задачу «превратить магнетизм в электричество». Через 10 лет экспериментальной работы он открыл закон электромагнитной индукции. (Суть закона: изменяющееся магнитное поле приводит к возникновению ЭДС индукции ЭДСi = k×DФm/Dt, где DФm/Dt – скорость изменения магнитного потока сквозь поверхность, натянутую на контур). С 1831-й по 1855-й годы. выходит в свет в виде серий главный труд Фарадея «Экспериментальные исследования по электричеству».

Работая над исследованием электромагнитной индукции, Фарадей приходит к выводу о существовании электромагнитных волн. Позже, в 1831-м году он высказывает идею об электромагнитной природе света.

Одним из первых, кто оценил работы Фарадея и его открытия, был Д.Максвелл, который развил идеи Фарадея, разработав в 1865-м году теорию электромагнитного поля, которая значительно расширила взгляды физиков на материю и привела к созданию электромагнитной картины мира (ЭМКМ).


7.2 Формирование понятия электромагнитного поля как новой физической реальности.

Концепция силовых линий, предложенная Фарадеем, долгое время не принималась всерьез другими учеными. Дело в том, что Фарадей, не владея достаточно хорошо математическим аппаратом, не дал убедительного обоснования своим выводам на языке формул. («Это был ум, который никогда не погрязал в формулах – сказал о нем А. Эйнштейн).

Блестящий математик и физик Джеймс Максвелл берет под защиту метод Фарадея, его идею близкодействия и поля, утверждая, что идеи Фарадея могут быть выражены в виде обычных математических формул, и эти формулы сравнимы с формулами профессиональных математиков.

Теорию поля Д. Максвелл разрабатывает в своих трудах «О физических линиях силы» (1861-1865) и «Динамическая теория поля (1864-1865). В последней работе и была дана система знаменитых уравнений, которые (по словам Герца) составляют суть теории Максвелла. Эта суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введена новая реальность – электромагнитное поле. Это ознаменовало начало нового этапа в физике - этапа, на котором электромагнитное поле стало реальностью, материальным носителем взаимодействия.

Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. (Действительно, вспомним, что в МКМ господствовал принцип дальнодействия, согласно которому действие различного рода сил передается мгновенно, без участия среды.)

Система уравнений для электрических и магнитных полей, разработанная Максвеллом, состоит из 4-х уравнений, которые эквивалентны 4-м утверждениям.

Уравнение

Утверждение

div E ~ q

Электрическое поле, соответствующее какому-либо распределению заряда, определяется из закона Кулона

div H = 0

Магнитные заряды не существуют




Переменное магнитное поле возбуждает электрический ток




Магнитное поле возбуждается токами и переменными электрическими полями

Анализируя свои уравнения, Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн. На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной, а, следовательно, и светом, что было блестяще доказано экспериментально в 1906-м году П.Н. Лебедевым.

Вершиной научного творчества Максвелла явился «Трактат по электричеству и магнетизму».

Развитие корпускулярно-континуальных представлений в трудах Максвелла. Развивая теорию электромагнитного поля, Максвелл не отвергал и дискретность материи. Он писал: «Даже атом, когда мы приписываем ему способность вращаться, можно представлять состоящим из многих элементарных частиц». Это было сказано в 1873-м году задолго до открытия электрона. Таким образом, Максвелл не отдавал предпочтения ни дискретности, ни непрерывности материи, допуская возможность и того и другого.

Разработав ЭМКМ, Максвелл завершил картину мира классической физики («начало конца классической физики»). Теория Максвелла является предшественницей электронной теории Лоренца и специальной теории относительности А.Эйнштейна.


7.3. Электронная теория Лоренца.

Голландский физик Г. Лоренц (1853-1928) считал, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. Лоренц высказал в этой связи свои представления об электронах, т.е. крайне малых электрически заряженных частицах, которые в громадном количестве присутствуют во всех телах.

В 1895 г. Лоренц дает систематическое изложение электронной теории, опирающейся, с одной стороны, на теорию Максвелла, а с другой – на представления об «атомарности» (дискретности) электричества. В 1887 г. был открыт электрон, и теория Лоренца получила свою материальную основу.

Совместно с немецким физиком П. Друде Лоренц разработал электронную теорию металлов, которая строится на следующих положениях.

1. В металле есть свободные электроны – электроны проводимости, образующие электронный газ.

2. Остов металла образует кристаллическая решетка, в узлах которой находятся ионы.

3. При наличии электрического поля на беспорядочное движение электронов накладывается их упорядоченное движение под действием сил поля.

4. При своем движении электроны сталкиваются с ионами решетки. Этим объясняется электрическое сопротивление.

Электронная теория позволила количественно описать многие явления, однако в ряде случаев, например, при объяснении зависимости сопротивления металлов от температуры и др. была практически бессильна. Это было связано с тем, что к электронам в общем случае нельзя применять законы механики Ньютона и законы идеальных газов, что было выяснено в 30-х годах 20 в.

В 1902 г. в опытах Кауфмана было обнаружено, что отношение заряда e к его массе m не является постоянной величиной, а зависит от скорости (с ростом скорости оно уменьшается). Из теории следовало, что q = const. Значит, растет масса. Возник вопрос, как это понять? Ответ был дан позже в специальной теории относительности.


7.4. Специальная теория относительности.

Из преобразований Галилея следует, что при переходе от одной инерциальной системы к другой такие величины, как время, масса, ускорение, сила остаются неизменными, т.е. инвариантными. В то же время координата, скорость, импульс, кинетическая энергия изменяются, т.е. являются вариантными. Инвариантность времени, массы, ускорения и силы при переходе от одной ИСО к другой и отражено в принципе относительности Галилея (механический принцип относительности).

Возникает вопрос: будут ли ИСО равноправны не только с точки зрения механики, но и с точки зрения физики в целом? Всегда ли верны представления классической механики и, в частности, преобразования Галилея?

Большой вклад в решение этого вопроса внесли исследования природы света и законов его распространения. В середине 19-го века были проведены довольно точные опыты по измерению скорости света. Оказалось, что в вакууме с =3×108 м/с. Сразу же возник вопрос: в какой системе отсчета? В результате опытов Майкельсона в 1881-м году (а также более поздних) было установлено, что скорость света в вакууме во всех системах отсчета независимо от величины и направления скорости их движения оставалась такой же, как и в системе отсчета, связанной с источником света. Это означало, что классический закон сложения скоростей для света не выполняется. Ведь из механики Галилея-Ньютона следовало, что .

Кроме того, возник вопрос: не является ли эфир, среда в которой распространяется свет «самой лучшей», «абсолютной системой отсчета»? Были выдвинуты и проверены гипотезы абсолютно неподвижного эфира, полного и частичного увлечения эфира движущимися телами. Однако при этом возникли большие трудности не только в разработке и постановке экспериментов, но и в истолковании их результатов.

Постулаты и основные следствия СТО. Принципиально новый подход к вышеупомянутым вопросам предложил Эйнштейн (1879-1955), разработавший в 1905-м году новую теорию пространства и времени, получившую название специальной теории относительности (СТО).

Основу СТО составляют два постулата (принципа):

Принцип относительности Эйнштейна. Этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в ИСО протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

Принцип постоянства скорости света. Скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме – предельная скорость в природе. Это одна из важнейших физических постоянных, так называемых мировых констант. (Следует заметить, что это противоречит закону сложения скоростей в механике.)

Анализ этих постулатов показывает, что они противоречат представлениям о пространстве и времени, принятым в механике Ньютона и отраженным в преобразованиях Галилея. Действительно, согласно принципу 1 все законы природы, в том числе законы механики и электродинамики, должны быть инвариантны по отношению к одним и тем же преобразованиям координат и времени, осуществляемым при переходе от одной системы отсчета к другой. Уравнения Ньютона этому требованию удовлетворяют, а вот уравнения электродинамики Максвелла – нет, т.е. оказываются не инвариантными. Это обстоятельство привело Эйнштейна к выводу о том, что Уравнения Ньютона нуждаются в уточнении, в результате которого как уравнения механики, так и уравнения электродинамики оказались бы инвариантными по отношению к одним и тем же преобразованиям. Необходимое видоизменение законов механики и было осуществлено Эйнштейном. В результате возникла механика, согласующаяся с принципом относительности Эйнштейна – релятивистская механика.

Согласно релятивистской механике переход от одной ИСО к другой должен осуществляться не по преобразованиям Галилея, а по другим. Ими стали преобразования Лоренца, из которых, как и из постулатов СТО вытекает ряд следствий. Рассмотрим некоторые из них.



  1. Закон сложения скоростей:

, где V0 – скорость подвижной системы координат К’ относительно неподвижной системы координат К; Vx – скорость материальной точки в системе К’; Vx – скорость материальной точки относительно системы К, с – скорость света в вакууме.

Если Vx и V0 намного меньше с, то релятивистский закон сложения скоростей переходит в классические преобразования Галилея для скоростей. Из этого закона следует также, что если скорость частицы относительно какой-либо инерциальной системы отсчета равна скорости света в вакууме, то она будет такой же относительно любой другой ИСО. Это означает, что если одна из скоростей равна с, то сумма скоростей тоже будет равна с. Более того, при Vx’= c и V0 = c имеем

Таким образом, при сложении скоростей никогда не может получиться скорость больше скорости света. Это находится в соответствии со 2-м постулатом СТО.

.

2. Следствием СТО явилась и зависимость массы тела от его движения. Зависимость массы от скорости была обнаружена в конце 19-го века в опытах с быстрыми электронами. Тогда же была предложена эмпирическая формула для этой зависимости:

, где m0 – масса покоя электрона, а m – его масса при скорости движения V (масса движения).


Если m0 ¹ 0, то частица не может двигаться со скоростью Vx>=c, т.к. это соответствовало бы бесконечно большой или мнимой массе, что абсурдно. Если же масса покоя частицы m0 = 0 (фотон, нейтрино), то её скорость может быть только c. (Действительно, при V>c и V

3. Относительность промежутка времени:

, где t0 – собственное время, т.е. время по часам, движущимся вместе с объектом со скоростью V, t – время по часам в неподвижной системе отсчета.

Таким образом, собственное время меньше времени по часам в неподвижной системе отсчета, т.е. физические процессы в движущейся системе отсчета замедляются (относительно неподвижной системы!). Разумеется, это становится заметно только при скоростях, соизмеримых со скоростью света. Замедление хода времени подтверждается в ядерной физике, в частности, в опытах с мюонами.

4. Важнейшим следствием СТО явилась знаменитая формула Эйнштейна о взаимосвязи массы и энергии Е = mc2, подтвержденная данными современной физики.


7.5 Общая теория относительности.

В 1916-м году Эйнштейн опубликовал общую теорию относительности (ОТО), над которой работал в течение 10 лет. ОТО обобщила СТО на ускоренные, т.е. неинерциальные системы. Основные принципы ОТО сводятся к следующему:

·ограничение применимости принципа постоянства скорости света областями, где гравитационными силами можно пренебречь; (там, где гравитация велика, скорость света замедляется);

·распространение принципа относительности на все движущиеся системы (а не только на инерциальные).

Из ОТО был получен ряд важных выводов:

Свойства пространства-времени зависят от движущейся материи.

Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

В частности, такое искривление должен испытывать луч, проходящий возле Солнца. Этот эффект, как писал Эйнштейн, можно обнаружить при наблюдении положения звезд во время солнечного затмения. В 1919-м году научные экспедиции Лондонского Королевского общества, направленные для изучения солнечного затмения подтвердили правильность этого утверждения. (Эйнштейн писал Планку: «Судьба оказала мне милость, позволив дожить до этого дня».)

Частота света под действием поля тяготения должна смещаться в сторону более низких значений.

В результате этого эффекта линии солнечного спектра должны смещаться в сторону красного цвета, по сравнению со спектрами соответствующих земных источников.

Действительно, красное смещение в спектрах небесных тел было обнаружено в 1923-26-м годах. при изучении Солнца, а в 1925-м году при изучении спутника Сириуса. Все это явилось убедительным подтверждением ОТО.

Следует сказать, что ОТО произвела настоящий переворот в космологии. На её основе появились различные модели Вселенной. Вокруг теории относительности развернулись широкие дискуссии, в которые включились люди разных специальностей, появилось множество научных и научно-популярных книг. Философские дискуссии, так или иначе связанные с идеями СТО и ОТО продолжаются и по сей день.

 

7.6 Основные понятия и принципы ЭМКМ.

Главная исходная идея ЭМКМ – это естественнонаучный материализм, а её ядро – теория электромагнитного поля. ЭМКМ базировалась на следующих идеях:

  • ·непрерывность материи (континуальность),

  • ·материальность электромагнитного поля,

  • ·неразрывность материи и движения,

  • ·связь пространства и времени как между собой, так и с движущейся материей.

Материя и движение. Материя существует в двух видах: вещество и поле. Они строго разделены и их превращение друг в друга невозможно. Главным является поле, а значит основным свойством материи является непрерывность (континуальность) в противовес дискретности.

Пространство и время. В первоначальной ЭМКМ абсолютное и пустое пространство (как в МКМ) было заполнено мировым эфиром. Электромагнитное поле представлялось как колебания эфира. С неподвижным эфиром пытались связать абсолютную систему отсчета, самую простую, самую лучшую. Создание СТО привело к отказу от эфира.

Из постулатов СТО следовала относительность длины, времени и массы, т.е. их зависимость от системы отсчета. Из преобразований Лоренца, выведенных для перехода от одной ИСО к другой, следовало, что пространство и время связаны между собой и образуют единый четырехмерный мир (пространственно-временной континуум Минковского), являясь его проекциями. Свойства пространственно-временного континуума (метрика Мира, его геометрия) определяются распределением и движением материи.

Событие, происходящее с некоторой частицей, характеризуется местом, где оно произошло (т.е. совокупностью значений x, y, z), и временем t, когда оно произошло. («Что? Где? Когда?»). В воображаемом четырехмерном пространстве, по осям которого откладываются пространственные координаты x, y, z и время t, событие можно изобразить точкой. Точка, изображающая событие в 4-мерном пространстве, называется мировой точкой. С течением времени мировая точка, соответствующая данной частице, перемещается в 4-мерном пространстве, описывая некоторую линию, которую называют мировой линией.

Взаимодействие. В период становления и развития ЭМКМ физика знала два взаимодействия – гравитационное и электромагнитное. В рамках этой картины Мира оба эти взаимодействия объяснялись исходя их понятия «поле». Это означало, что и то и другое взаимодействие передается с помощью промежуточной среды, т.е. поля со скоростью, равной скорости света. Таким образом, принцип дальнодействия МКМ был заменен принципом близкодействия. В рамках ЭМКМ А. Эйнштейном была предпринята попытка разработать единую теорию гравитационного и электромагнитного взаимодействия. После создания ОТО ученый до конца своей жизни работал над созданием единой теории поля – труд, непосильный для одного человека. (На сегодня создана теория поля, включающая три взаимодействия: электромагнитное, сильное и слабое. Включение в неё гравитационного взаимодействия до сих пор остается проблемой).

Основными принципами ЭМКМ являются принцип относительности Эйнштейна, близкодействие, постоянство и предельность скорости света, эквивалентность инертной и гравитационной масс, причинность. (Какого-либо нового понимания причинности по сравнению с МКМ не произошло. Главными считались причинно-следственные связи и динамические законы, их выражающие.) Большое значение имело установление взаимосвязи массы и энергии (E = mc2). Масса стала не только мерой инертности и гравитации, но и мерой содержания энергии. В результате два закона сохранения – массы и энергии – были объединены в один общий закон сохранения массы и энергии.

Дальнейшее развитие физики показало, что ЭМКМ имеет ограниченный характер. Главная трудность здесь заключалась в том, что континуальное понимание материи не согласовывалось с опытными фактами, подтверждающими дискретность многих её свойств – заряда, излучения, действия. Не удавалось объяснить соотношения между полем и зарядом, устойчивость атомов, их спектры, явление фотоэффекта, излучение абсолютно черного тела. Все это свидетельствовало об относительном характере ЭМКМ и необходимости замены её новой картиной мира.

Вскоре на смену ЭМКМ пришла новая – квантово-полевая картина Мира, объединившая дискретность МКМ и непрерывность ЭМКМ.


Контрольные вопросы

  1. Назовите важнейшие законы и открытия в области электричества и магнетизма, положенные в основу ЭМКМ.

  2. В чем состоит суть открытия Эрстеда?

  3. В чем отличие силовых линий электрического и магнитного полей?

  4. Кто является создателем электродинамики?

  5. Охарактеризуйте вклад М.Фарадея в создание ЭМКМ.

  6. Раскройте сущность теории Максвелла. Каким утверждениям соответствуют уравнения Максвелла?

  7. Какая новая физическая реальность была введена в научную картину мира в результате исследований Максвелла?

  8. Объясните понятие инвариантности.

  9. Какие величины не являются инвариантными относительно выбора ИСО в преобразованиях Галилея? Какие величины не являются инвариантными?

  10. Назовите основные постулаты СТО.

  11. Что такое релятивистская механика?

  12. Материальное тело движется со скоростью 60 м/с. Можно ли описать его движение в рамках механики Галилея-Ньютона или следует привлечь релятивистскую механику? Какими формулами следует пользоваться, если тело движется со скоростью 6×107м/с? Ответ обоснуйте вычислениями.

  13. Может ли частица с массой покоя, не равной нулю, двигаться со скоростью, равной скорости света?

  14. Может ли частица, с массой покоя, равной нулю, двигаться со скоростью света?

  15. Может ли частица, с массой покоя, равной нулю, двигаться со скоростью, меньшей скорости света?

  16. При увеличении скорости тела его масса относительно неподвижной системы отсчета ; а) возрастает, б) убывает.

  1. Что такое парадокс близнецов? Объясните его с помощью формул Лоренца.

  2. Назовите основные принципы ОТО.

  3. Как ведет себя луч света в поле тяготения согласно ОТО? Что происходит с частотой световой волны?

  4. Перечислите основные идеи ЭМКМ.

  5. Какое свойство материи – континуальность или дискретность является главным в ЭМКМ?

  6. Как связаны пространство и время в СТО? Что такое пространственно-временной континуум?

  7. Объясните понятия «мировая точка», «мировая линия».

Добавить документ в свой блог или на сайт
Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconСоставитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Мегамир. Основные космологические и космогонические представления. Основные представления о мегамире

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconКартина мира как проблема онтологии и теории познания

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма icon«Законы сохранения в механике»
Научные методы показания окружающего мира. Роль эксперимента и теории в процессе познания. Научные гипотезы. Физические законы. Физические...

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconКонспект лекций Автор-составитель, к м. н., доцент Шмелев И. А

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconЛекция электродинамика теории относительности (продолжение)

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconЛекция электродинамика теории относительности (окончание)

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconТеория мироздания или философский вывод формул теории относительности, электромагнитной теории, теории единого поля и корпускулярно-волнового дуализма

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconЭкзаменационные билеты по предмету: «физика» Для групп №
Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания. Научные гипотезы. Физические законы. Физические...

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма icon§§ 75 126 (стр. 226 373). Вопросы к зачету: Постулаты специальной теории относительности (сто): инвариантность скорости света, принцип относительности Эйнштейна

Составитель лекций доцент междисциплинарной кафедры тпу, к г. н. А. Е. Тябаев Лекция Электромагнитная картина мира. Специальная и общая теории относительности. Основные экспериментальные законы электромагнетизма iconКраткий конспект лекций по дисциплине «Принципы и методы лингвистических исследований» Лекция Общие вопросы теории метода в лингвистике



База данных защищена авторским правом © 2018
обратиться к администрации | правообладателям | пользователям
поиск