14 Физиология головного мозга Часть I. Ствол головного мозга icon

14 Физиология головного мозга Часть I. Ствол головного мозга





Скачать 182.61 Kb.
Название14 Физиология головного мозга Часть I. Ствол головного мозга
Дата конвертации13.05.2013
Размер182.61 Kb.
ТипДокументы
Тема 14

Физиология головного мозга

Часть I. Ствол головного мозга


Ствол мозга – это часть головного мозга, включающая в себя продолговатый мозг, варолиев мост и средний мозг. Здесь находятся ядра черепно-мозговых нервов, труктуры ретикулярной формации, ядерные образования, имеющие отношение к осуществлению широкого круга рефлекторных реакций соматического и вегетативного обеспечения высших функций центральной нервной системы. Кроме того, через ствол проходят восходящие и нисходящие пути, связывающие его со спинным мозгом и корой больших полушарий. Ствол мозга теряет свойство метамерности, характеризующее спинной мозг, и представляет собой систему специализированных ядерных образований. К стволовым функциям физиологи относят сложные цепные рефлексы, регуляцию тонуса и позы, влияние ретикулярной формации.

Функции ствола мозга, которые реализуются ядрами черепных нервов.

В стволе мозга находятся ядра III – XII пар черепных нервов, через которые осуществляются чувствительные (сенсорные), двигательные (соматические) и вегетатиыне (парасимпатические) функции.

Ядра глазодвигательного нерва (III пара) расположены в среднем мозге. Двигательное ядро сокращает верхнюю, нижнюю, внутреннюю прямые, нижнюю косую мышцы глаза и мышцу, поднимающую верхнее веко, участвуя в глазодвигательных рефлексах. Добавочное (парасимпатическое) ядро, иннервируя сфинктер зрачка и ресничную мышцу, осуществляет рефлексы сужения и аккомодации глаза.

Ядро блокового нерва (IV пара) находится в среднем мозге. Иннервируя верхнюю косую мышцу, оно осуществляет поворот глазного яблока вниз и кнаружи.

Тройничный нерв (V пара) имеет двигательное и чувствительные ядра. Двигательное ядро расположено в мосту, иннервирует жевательную мускулатуру и вызывает движение нижней челюсти вверх, вниз, в стороны и вперед, а также напрягает мягкое небо и барабанную перепонку. Чувствительные ядра (средне-мозговое, мостовое, спинальное) получают от кожи, слизистых оболочек, органов лица и головы тактильную, температурную, висцеральную, проприоцептивную и болевую импульсацию. Кроме этого они входят в проводниковый отдел соответствующих анализаторов и участвуют в различных рефлексах, например, жевательном, глотательном, чихательном.

Ядро отводящего нерва (VI пара) расположено в мосту. Вызывает поворот глаза наружу, сокращая наружную прямую мышцу глаза.

Ядра лицевого нерва (VII пара) находятся в мосту. Двигательное ядро вызывает сокращение мимической и вспомогательной мускулатуры, регулирует передачу звуковых колебаний в среднем ухе в результате сокращения стременной мышцы. Чувствительное ядро одиночного пути, иннервируя вкусовые луковицы передних 2/3 языка, анализирует вкусовую чувствительность, участвует в моторных и секреторных пищеварительных рефлексах. Верхнее слюноотделительное (парасимпатическое) ядро стимулирует выделение секретов подъязычной, подчелюстных слюнных желез и слезной железы.

Чувствительные ядра преддверно-улиткового нерва (VIII пара) расположены в продолговатом мозге. Вестибулярные ядра, иннервируя рецепторы вестибулярного аппарата, участвуют в регуляции позы и равновесия тела (статические и статокинетические рефлексы), в вестибулоглазных и вестибуловегетативных рефлексах, входят в проводниковый отдел вестибулярного анализатора. Улитковые ядра, иннервирующие слуховые рецепторы, участвуют в слуховом ориентировочном рефлексе, входят в состав проводникового отдела слухового анализатора.

Ядра языкоглоточного нерва (IX пара) расположены в продолговатом мозге. Двойное (двигательное) ядро вызывает поднимание глотки и гортани, опускание мягкого неба и надгортанника в глотательном рефлексе. Чувствительное ядро одиночного пути получает вкусовую, тактильную, температурную, болевую и интероцептивную чувствительность от слизистой оболочки глотки, задней трети языка, барабанной полости и каротидного тельца, входит в состав соответствующих анализаторов, участвует в рефлексах жевания, глотания, в секреторных и моторных пищеварительных рефлексах, а также в сосудистых и сердеяных рефлексах (из каритидного тельца). Нижнее слюноотделительное (парасимпатическое) ядро стимулирует секрецию околоушной слюнной железы.

Ядра блуждающего нерва (X пара) расположены в продолговатом мозге. Двойное (двигательное) ядро, сокращая мышцы неба, глотки, верхней части пищевода и гортани, участвует в рефлексах глотания, рвоты, чихания, кашля, в формировании голоса. Чувствительное ядро одиночного пути, иннервируя слизистую оболочку неба, корня языка, дыхательных путей, аортальное тельце, органы шеи, грудной и брюшной полости, участвует в качестве афферентного звена в глотательном, жевательном, дыхательных, висцеральных рефлексах. Оно входит в проводниковый отдел интероцептивного, вкусового, тактильного, температурного и болевого анализаторов. Заднее (парасимпатическое) ядро, иннервируя сердце, гладкую мускулатуру и железы шеи, грудной и брюшной полостей, участвует в сердечных, легочных, бронхиальных и пищеварительных рефлексах.

Двигательное ядро добавочного нерва (XI пара) расположено в продолговатом и спинном мозге и посылает импульсы к грудино-ключично-сосцевидной и трапециевидной мышцам, что ведет к их сокращению и вызывает наклон головы набок с поворотом лица в противоположную сторону, поднимание плечевого пояса вверх, сведение лопаток к позвоночнику.

Двигательное ядро подъязычного нерва (XII пара) находится в продолговатом мозге. Иннервирует мышцы языка, вызывая его движение в рефлексах жевания, сосания, глотания и осуществлении речи.

Таким образом, с участием ядер черепных нервов реализуются сенсорная и рефлекторная (соматическая и вегетативная) функции ствола мозга.

Сложные рефлексы ствола мозга. С участием ствола мозга осуществляются сложные соматические рефлексы, в каждом из которых задействованы ядра нескольких черепных нервов.

  1. Глазодвигательные рефлексы имеют центры, функционально объединяющие чувствительные ядра тройничного, преддверно-улиткового нервов, бугорки четверохолмия, двигательные ядра глазодвигательного, блокового и отводящего нервов. Координация их деятельности осуществляется ретикулярной формацией ствола мозга, а также мозжечком и корой больших полушарий. В результате этих рефлексов происходит содружественные движения глаз в различных направлениях.

  2. Рефлекторный акт жевания обеспечивается мышцами, вызывающими движения нижней челюсти и удерживающими пищу между зубными рядами. Афферентная импульсация возникает с различных рецепторов слизистой оболочки рта и проприорецепторов аппарата жевания и распространяется в основном по сенсорным волокнам тройничного нерва. Центр жевания (центральный генератор ритма жевания) находится в ретикулярной формации продолговатого мозга и моста и вызывает ритмическое возбуждение мотонейронов мышц, поднимающих и опускающих нижнюю челюсть. Генератор ритма жевания может быть запущен и от жевательной области лобной коры, что обеспечивает произвольный контроль жевания. Эфферентное влияние центра жевания осуществляется через двигательные ядра V, VII и XII нервов.

  3. Рефлекторный акт глотания обеспечивает поступление пищи из ротовой полости в желудок. При передвижении пищевого комка из полости рта в пищевод происходит последовательное возбуждение рецепторов корня языка, мягкого неба, глотки и пищевода. Импульсация по чувствительным волокнам тройничного, языкоглоточного и блуждающего нервов поступает в центр глотания, который расположен в продолговатом мозге и мосте. Этот центр функционально объединяет нейроны примерно двух десятков ядер ствола, шейных и грудных сегментов спинного мозга. В результате этого обеспечивается строго координированная последовательность сокращения мышц, которые участвуют в акте глотания: мышц мягкого неба, глотки, гортани и надгортанника, пищевода. Центр глотания функционально связан с центром дыхания, которое прекращается в течение каждого глотательного акта.

  4. Рвотный рефлекс является защитной реакцией, возникающей при раздражении рецепторов корня языка, глотки, желудка, кишечника, брюшины, вестибулярного аппарата. Афферентная импульсация по волокнам языкоглоточного, блуждающего или преддверно-улиткового нервов поступает в рвотный центр, расположенный в продолговатом мозге. Рвоту можно вызвать и непосредственным раздражением рвотного центра местным патологическим процессом или химическими веществами. Эфферентные импульсы из рвотного центра поступают по блуждающему нерву к пищеводу, желудку, кишечнику и через спинальные моторные центры к диафрагме и мышцам брюшной стенки, сокращение которых приводит к перемещению содержимого желудка.

  5. Рефлекс кашля является защитным рефлексом, возникающим при раздражении рецепторов гортани, трахеи и бронхов. Импульсация по чувствительным волокнам блуждающего нерва возбуждает кашлевой центр продолговатого мозга, имеющий эфферентный выход на спинальные моторные центры дыхательных мышц. Центр кашля запускает жестко запрограммированную последовательность реакций, в которой можно выделить три фазы: 1) глубокий вдох; 2) сокращение мышц выдоха на фоне закрытой голосовой щели и сужения бронхов, что приводит к резкому повышению давления в легких; 3) активный выдох на фоне мгновенного раскрытия голосовой щели, создающий мощный воздушный поток, направляемый за счет напряжения мягкого неба через рот.

  6. Рефлекс чихания возникает при раздражении рецепторов преимущественно верхнечелюстной и частично глазничной ветви тройничного нерва в слизистой оболочке полости носа, особенно средней носовой раковины и перегородки. Центр чихания, расположенный в продолговатом мозге, организует те же центральные системы, что и при кашле, но поток воздуха при форсированном выдохе на фоне быстрого открывания голосовой щели и опускания мягкого неба направляется преимущественно через нос.

Ретикулярная формация ствола мозга. Ретикулярная формация образована совокупностью нейронов, расположенных в центральных отделах ствола мозга как диффузно, так и в виде ядер. Нейроны ретикулярной формации имеют длинные маловетвящиеся дендриты и хорошо ветвящийся аксон. Это полимодальные нейроны, которые имеют большие рецепторные поля. У нейронов ретикулярной формации длительность латентного периода состоит из суммы латентных периодов многочисленных синапсов. Нейроны РФ принимают импульсы от сенсорных путей, идущих от разных рецепторов и обладают высокой чувствительностью к адреналину, двуокиси углерода, аминазину и барбитуратам.

Ретикулярная формация имеет связи с многочисленными структурами ЦНС: ▓ Афферентные входы поступают в ретикулярную формацию от трех источников: 1) от температурных и болевых рецепторов по волокнам спиноретикулярного пути и тройничного нерва; 2) от сенсорной и частично от других зон коры головного мозга по кортико-ретикулярным путям импульсация поступает в ядра ретикулоспинальных путей и в ядра, которые проецируются на мозжечок; 3) от ядер мозжечка по мозжечковоретикулярному пути.

Эфферентные выходы из ретикулярной формации проецируются в спинной мозг по латеральному и медиальному ретикулоспинальным путям; 2) к верхним отделам головного мозга (неспецифическим ядрам таламуса, заднему гипоталамусу, полосатому телу) идут восходящие пути, которые начинаются в ядрах продолговатого мозга и моста; 3) к мозжечку идут пути, которые начинаются в латеральных и парамедиальных ретикулярных ядрах и в ядре покрышки моста.





Рис.1. Ретикулярная формация ствола мозга. Схема основных афферентных и эфферентных связей.


Многообразие связей и структур РФ определяет ее многочисленные функции, которые можно объединить в три главные группы: соматические (двигательные), сенсорные (восходящее влияние на большой мозг) и вегетативные.

Соматические функции РФ проявляются в ее координирующем влиянии на двигательные ядра черепных нервов, моторные спинальные центры и активность мышечных рецепторов.

▒ Ретикулярная формация среднего и продолговатого мозга осуществляет координацию функций ядер глазодвигательных нервов (III, IV, VI), обеспечивая содружественные движения глаз в горизонтальном и вертикальном направлениях. При двустороннем поражении этих отделов РФ становится невозможным произвольное выполнение горизонтальных и вертикальных движений глаз.

▒ РФ влияет на моторные спинальные центры (нисходящее влияние):

  1. От ретикулярного гигантоклеточного ядра продолговатого мозга идет латеральный ретикулоспинальный путь, волокна которого оканчиваются на вставочных нейронах спинного мозга. Через эти интернейроны данные волокна возбуждают ά – и γ –мотонейроны мышц-сгибателей конечностей и реципрокно тормозят мышцы-разгибатели.

  2. От ретикулярных ядер моста идет медиальный ретикулоспинальный путь, который оканчивается на интернейронах спинного мозга. Через них осуществляется стимуляция ά- и γ-мотонейронов мышц-разгибателей мускулатуры туловища и проксимальных отделов конечностей. Через тормозные интернейроны тормозятся сгибатели.

Сенсорные функции РФ. Восходящее влияние ретикулярной формации на большой мозг может быть как активизирующим, так и тормозным. Импульсы ретикулярных нейронов продолговатого мозга, моста и среднего мозга поступают к неспецифическим ядрам таламуса, и, после переключения в них, проецируются в различные области коры. Кроме таламуса восходящие импульсы поступают также в задний гипоталамус, полосатое тело и прозрачную перегородку. Важнейшей функцией восходящей РФ является регуляция цикла «сон – бодрствование» и уровня сознания.

Вегетативные функции РФ. Ретикулярная формация поддерживает тонус вегетативных центров, интегрирует симпатические и парасимпатические влияния для реализации потребностей целостного организма, передает модулирующее влияние от гипоталамуса и мозжечка к органам, являясь важнейшей структурой жизненно важных центров продолговатого мозга – сердечно-сосудистого и двигательного.

Сердечно-сосудистый центр представлен нейронами, которые имеют выход на симпатические и парасимпатические центры, иннервирующие сердце и тонус сосудов. Поэтому первоначальное название этого центра – сосудодвигательный, в настоящее время заменяют на сердечно-сосудистый. Схема центра, предложенная в 1946 году Р.Александером, состоит из прессорной и депрессорной зон.

Прессорная зона сосудодвигательного центра расположена на уровне и выше нижнего угла ромбовидной ямки в заднебоковых отделах продолговатого мозга. Ее раздражение приводит к повышению артериального давления и частоты сердечных сокращений.

Депрессорная зона центра расположена на уровне нижнего угла ромбовидной ямки в передних отделах продолговатого мозга и моста.

Прессорная и депрессорная зоны сосудодвигательного центра в анатомическом и функциональном отношении определены нечетко: в каждом из них имеются как прессорные, так и депрессорные точки.

Дыхательный центр. Дыхательный центр представляет собой совокупность нейронов, расположенных на различных уровнях ЦНС. Главная часть центра располагается в продолговатом мозге в нижнем углу ромбовидной ямки и состоит их двух симметричных групп нейронов: дорсальной и вентральной. Кроме продолговатого мозга в ретикулярной формации моста также имеется две группы нейронов, участвующих в регуляции дыхания. Одна находится в верхней части моста и называется пневмотаксическим центром, вторая группа располагается в средней и нижней частях моста и называется апнейстическим центром. В дыхательном процессе участвуют также мотонейроны спинного мозга, которые получают импульсацию от нейронов продолговатого мозга и посылают их к дыхательным мышцам по диафрагмальному и межреберным нервам.

Стволовые рефлексы. Стволовые рефлексы запускаются с рецепторов вестибулярного аппарата, проприорецепторов шеи, рецепторов сетчатки и тактильных рецепторов.

Регуляция тонуса мышц. Эфферентные влияния из моторных центров ствола распространяются на мускулатуру конечностей и туловища по четырем нисходящим путям: вестибулоспинальному, руброспинальному, латеральному и медиальному ретикулоспинальному.

Вестибулоспинальный путь начинается преимущественно от вестибулярного латерального ядра, которое получает афферентную импульсацию от рецепторов отолитового аппарата и ампул полукружных каналов. Его волокна оказывают возбуждающее действие на спинальные ά- и γ-мотонейроны мышц-разгибателей конечностей, туловища, шеи, а также тормозящее реципрокное влияние на мотонейроны сгибателей. Такое же действие оказывают аксоны нейронов медиального ретикулоспинального пути.

Руброспинальный путь оказывает противоположное влияние на мышечный тонус. Этот путь начинается от красного ядра покрышки среднего мозга и идет в спинной мозг, возбуждая ά – и γ-мотонейроны мышц-сгибателей и реципрокно тормозя мотонейроны мышц-разгибателей. Аналогично действуют на мышечный тонус волокна нейронов латерального ретикулоспинального и пирамидного кортикоспинального пути.

Таким образом, в стволе мозга имеется четыре главных парных моторных центра и пути, которые регулируют тонус мышц туловища и конечностей.

Установочные рефлексы. Через стволовые моторные центры вестибулоспинального, руброспинального, медиального и латерального ретикулоспинальных путей осуществляется регуляция установки тела в пространстве, направленная на сохранение нормальной позы тела и равновесия. Голландский физиолог Р.Магнус разделил все установочные рефлексы на две группы: статические и статокинетические.

Статические рефлексы обуславливают положение тела и его равновесие в состоянии покоя. Магнус разделил их на рефлексы позы (положения тела) и выпрямительные рефлексы.

Рефлексы позы возникают при изменениях положения головы (сдвиг центра тяжести) и направлены на сохранение при этом нормальной позы. Афферентные импульсы поступают с рецепторов отолитового аппарата и проприорецепторов мышц шеи. Рефлексы позы делят на шейные и вестибулярные.

1. Шейные рефлексы. Нейтральное положение шеи – это положение на одной линии с туловищем, при этом импульсация с шейных проприорецепторов минимальна. Если шея отклоняется дорсально, то происходит рефлекторное разгибание верхних конечностей. Если шея наклонена вентрально, то происходит рефлекторное разгибание нижних конечностей. При наклоне шеи вбок активируются разгибатели на стороне наклона.

2. Вестибулярные рефлексы. Афферентные импульсы поступают из лабиринта внутреннего уха.

При вертикальной позе человека происходит повышение тонуса мышц-разгибателей нижних конечностей и сгибателей верхних конечностей. При этом шейные и лабиринтные рефлексы усиливают друг друга.

Выпрямительные рефлексы являются более сложным вариантом статических рефлексов, благодаря которым организм способен возвращаться в естественную позу после ее нарушения. Рефлексы осуществляются с рецепторов шейных мышц, лабиринта, кожи, сетчатки при обязательном участии среднего мозга. Важными компонентами этих рефлексов являются шейный, вестибулярный и оптический установочные рефлексы, а первой двигательной реакцией – восстановление нормального положения головы. Далее возникает цепь рефлекторных реакций с перераспределением тонуса мышц конечностей и туловища, в результате которых восстанавливается нормальная поза тела.

Статокинетические рефлексы возникают при ускорениях прямолинейного и вращательного движения организма. Сокращения мышц при этом направлены на преодоление действующих на человека ускорений, сохранение нормальной позы, равновесия и ориентации в пространстве. Для их осуществления необходимо сохранение функции моторных центров ствола мозга не ниже уровня среднего мозга. Эти рефлексы запускаются с рецепторов вестибулярного аппарата: с рецепторов отолитового аппарата возникают рефлексы прямолинейного ускорения, а с рецепторов ампул полукружных каналов – рефлексы вращения.

Примером рефлекса прямолинейного ускорения является лифтный рефлекс. В начале быстрого подъема лифта (или остановки движущегося вниз лифта) в нижних конечностях повышается тонус мышц-сгибателей. В начале опускания лифта (или останови движущегося вверх лифта) повышается тонус мышц-разгибателей.

Статокинетические рефлексы вращения включают мускулатуру тела и глазные мышцы. Движение глазных яблок (глазной нистагм) при этом способствует сохранению зрительной ориентации и имеет две фазы.

При ускорении вращения сначала происходит медленное отклонение глазных яблок в сторону, противоположную вращению. После этого они быстро откланяются обратно (по ходу вращения). Медленное отклонение вызывается с рецепторов полукружных каналов, быстрый компонент связан с влиянием корковых центров.

При замедлении вращения медленное движение глаз направлено в сторону вращения, а быстрое – против направления вращения.

Исследование нистагма используется для оценки функционального состояния вестибулярного аппарата. Глазной нистагм может возникнуть без вращения, если происходит раздражение рецепторов полукружных каналов патологическим процессом.

Локомоторная функция. Кроме регуляции мышечного тонуса, позы и равновесия, структуры ствола мозга участвуют в контроле спинального автоматизма шагания и, следовательно, в осуществлении локомоции – совокупности согласованных движений. Важное значение в осуществлении этой функции придают клинообразному ядру среднего мозга. Это ядро имеет эфферентный выход к ядрам моста. Кроме этого функции клиновидного ядра находятся под непосредственным влиянием корковых отделов и гипоталамуса. Разрушение ядра ведет к утрате способности бегать и резко нарушается ходьба. При нарушении влияния на ядро вышележащих отделов мозга исчезают произвольные движения. При нарушении связи среднего мозга с продолговатым развивается децеребрационная ригидность (резкое преобладание тонуса мышц-разгибателей над сгибателями конечностей, туловища и шеи).

Функция голубого пятна. Голубое пятно имеется только у млекопитающих. Оно расположено в каудальном отделе среднего мозга и является основным норадренэргическим образованием среднего мозга. Аксоны нейронов голубого пятна связаны с корой больших полушарий, ядрами ствола, промежуточного мозга и моторными центрами спинного мозга. Афферентные входы голубое пятно получает от ядер тройничного нерва, ядра одиночного пути, гипоталамуса, ретикулярной формации ствола, черного вещества среднего мозга.

Моторные функции голубого пятна. Аксоны нейронов голубого пятна идут к ά –мотонейронам передних рогов спинного мозга, где норадреналином тормозят эти мотонейроны. Импульсная активность нейронов голубого пятна повышена в фазе быстрого сна. При одностороннем разрушении голубого пятна возникают вращательные движения в сторону, противоположную разрушению, что объясняется связью голубого пятна с черной субстанцией.

Гомеостатическая функция голубого пятна. В функциональном плане голубое пятно связано с чувствительными ядрами тройничного, языкоглоточного и блуждающего нервов. Вместе они составляют основную мозговую структуру, которая обеспечивает постоянство внутренней среды организма (гомеостаз). Эта способность связана с тем, что голубое пятно, с одной стороны способно реагировать на изменение газового состава крови и ликвора, а с другой стороны, имеет многочисленные эфферентные выходы на гипоталамус, ретикулярную формацию и вегетативные центры, обеспечивающие нейрогуморальную регуляцию состава внутренней среды организма. Голубое пятно играет особую роль в повышении устойчивости организма к стрессовым нагрузкам.

Антиноцицептивная функция ствола мозга. В стволе мозга имеются структуры, входящие в противоболевую систему головного мозга. К ним относят центральное серое вещество среднего мозга, большое ядро шва и часть гигантоклеточного ретикулярного ядра продолговатого мозга. Большинство нейронов этих образований являются серотонинэргическими и оказывают тормозное влияние на нейроны задних рогов спинного мозга, образующих болевые пути (боковой спиноталамический и спиноретикулярный).

Проводниковая функция ствола мозга. Эта функция выполняется восходящими и нисходящими путями. Часть этих путей идет транзитно, а часть – переключается в стволовых центрах.

Восходящие (афферентные) пути являются частью проводникового отдела анализаторов, передающих информацию от рецепторов в сенсорную зону коры. В стволе мозга выделяют две восходящие системы: специфическую и неспецифическую.

Специфическую афферентную систему составляет лемнискоталамический путь, в котором выделяют медиальную и латеральную петли.

╠ Медиальная петля образуется преимущественно из аксонов нейронов ядер Голля и Бурдаха, которые проводят от рецепторов конечностей, туловища и шеи проприоцептивную, тактильную и висцеральную чувствительность. К медиальной петле присоединяются также волокна спиноталамического пути, которые несут тактильную чувствительность; часть волокон ядер V пары ЧМН, проводящих от головы проприоцептивную и тактильную чувствительность; часть волокон ядра одиночного пути, проводящих вкусовую и висцеральную чувствительность (волокна блуждающего, языкоглоточного и лицевого нервов); часть волокон латерального спиноталамического пути, которые несут острую локализованную болевую чувствительность. Все волокна медиальной петли переключаются в специфических ядрах таламуса.

╠ Латеральная (слуховая) петля составлена аксонами нейронов ядер трапециевидного тела и верхней оливы моста, входящих в проводниковый отдел слухового анализатора. Латеральная петля переключается в медиальном коленчатом теле таламуса и нижних буграх четверохолмия.

К специфической проводящей системе относятся проводящие пути зрительного и вестибулярного анализаторов, которые не входят в лемнисковые пути, но переключаются в сенсорных ядрах таламуса.

Функциональной особенностью специфической проводящей системы является высокая скорость проведения возбуждения, ее нейроны имеют небольшие рецептивные поля, они преимущественно моносенсорны. В центрах переключения афферентных нейронов имеется выраженная топографическая проекция периферии. В результате обеспечивается быстрая передача информации с тонким различием свойств раздражителя. При этом в корковом отделе соответствующего анализатора с коротким латентным периодом возникают вызванные потенциалы, называемые первичным ответом.

Неспецифические восходящие пути переключаются в неспецифических ядрах таламуса. В основном это волокна латерального спиноталамического и спиноретикулярного путей, проводящих температурную и болевую чувствительность. Функциональной особенностью неспецифической системы является медленное проведение информации с плохой локализацией раздражителя и анализом его свойств. Рецептивные поля нейронов большие, нейроны полисенсорные, связанные с несколькими видами чувствительности, топография проекции периферии в центрах не выражена. При проведении возбуждения через эту систему на ЭЭГ фиксируются вызванные потенциалы с большим латентным периодом, называемые вторичным ответом. Неспецифическая система получает коллатеральные волокна от специфической системы, что обеспечивает связь этих двух афферентных систем.

Кроме проведения возбуждения по специфической и неспецифической афферентной системам через ствол мозга в мозжечок проходят дорсальный спинно-мозжечковый путь Флексига, проводящий импульсацию от рецепторов мышц и связок, и вентральный спинно-мозжечковый путь Говерса – от рецепторов сухожилий, кожи и внутренних органов, а также вестибуломозжечковый путь, несущий информацию от вестибулярных рецепторов.

▓ Нисходящие проводниковые пути ствола мозга можно объединить в несколько групп.

▒ Двигательные пирамидные пути, начинаются от клеток Беца коры прецентральной извилины. Они иннервируют мотонейроны передних рогов спинного мозга (кортикоспинальный путь) или мотонейроны двигательных ядер черепных нервов (кортикобульбарный путь), обеспечивая произвольные сокращения мышц конечностей, туловища, шеи и головы.

Кортикорубральный и кортикоретикулярный пути на уровне ствола мозга образуют экстрапирамидную систему, основной функцией которой является произвольная и рефлекторная регуляция мышечного тонуса, позы и равновесия. Волокна этих путей оканчиваются в моторных центрах ствола мозга.

▒ В стволе мозга проходят нисходящие пути, обеспечивающие двигательные функции мозжечка. К ним относится кортико-мозжечковый путь, по которому в мозжечок поступает импульсация от двигательной коры. Эта импульсация обрабатывается в коре мозжечка и в его ядрах, а затем поступает в моторные ядра ствола мозга (красное, вестибулярные, ретикулярные).

▒ Через ствол мозга проходит тектоспинальный путь, который начинается в четверохолмии. Он обеспечивает двигательные реакции организма в ориентировочных зрительном и слуховом рефлексах.

Схема основных моторных центров ствола мозга и их путей приведена ниже.





Рис.2. Схема основных моторных центров ствола мозга и их путей, регулирующих тонус мышц туловища и конечностей:

КЯ – красное ядро и руброспинальный путь; РЯМ – ретикулярные ядра моста и медиальный ретикулоспинальный путь; ВЯ – вестибулярные ядра и вестибулоспинальный путь; РГЯ – ретикулярное гигантоклеточное ядро и латеральный ретикулоспинальный путь; МН – спинальные мотонейроны.

Добавить документ в свой блог или на сайт
Ваша оценка этого документа будет первой.
Ваша оценка:

Похожие:

14 Физиология головного мозга Часть I. Ствол головного мозга iconРанения и повреждения черепа, головного мозга, позвоночника и спинного мозга. Ранения и повреждения грудной клетки и ёё органов. Ранения и повреждения живота ранения и повреждения черепа, головного мозга, позвоночника и спинного мозга. Класификация повреждений черепа
Класификация повреждений черепа. Повреждения черепа и головного мозга подразделяют на закрытые и открытые (ранения)

14 Физиология головного мозга Часть I. Ствол головного мозга iconМорфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры)
Ние локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции...

14 Физиология головного мозга Часть I. Ствол головного мозга icon1. Психика как свойство мозга. Функции психики и их значение Психика есть свойство или функция головного мозга. Абудучи свойством мозга и завися от качества нер

14 Физиология головного мозга Часть I. Ствол головного мозга iconВызванные потенциалы головного мозга

14 Физиология головного мозга Часть I. Ствол головного мозга iconАрхитектоника коры больших полушарий головного мозга

14 Физиология головного мозга Часть I. Ствол головного мозга iconСерое и белое вещество головного и спинного мозга

14 Физиология головного мозга Часть I. Ствол головного мозга iconПочему нужно знать физиологию головного мозга психологу? 2

14 Физиология головного мозга Часть I. Ствол головного мозга iconХирургия глубинных образований головного мозга с использованием стереотаксического метода

14 Физиология головного мозга Часть I. Ствол головного мозга iconК и м валерий Иргюнович микрохирургическая анатомия твердой оболочки головного мозга на внутреннем основании черепа

14 Физиология головного мозга Часть I. Ствол головного мозга iconСфера подсознательного. Особенности функции левого и правого полушарий головного мозга. Речевая форма отражения действительности



База данных защищена авторским правом © 2018
обратиться к администрации | правообладателям | пользователям
поиск